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Quantum mechanics allows for many-particle wave functions that cannot be
factorized into a product of single-particle wave functions, even when the con-
stituent particles are entirely distinct. Such “entangled” states explicitly demon-
strate the nonlocal character of quantum theory,1 have been suggested for use
in high-precision spectroscopy,2 and are a fundamental element of schemes for
quantum communication, cryptography, and computation.3 In general, the more
particles which can be entangled, the more clearly nonclassical effects are exhib-
ited4,5 and the more useful the states are for quantum applications. In pursuit
of these goals, we have demonstrated a recently proposed entanglement tech-
nique applicable to trapped ions.6 Coupling between the ions is provided by the
Coulomb interaction through their collective motional degrees of freedom, but
actual motional excitation is minimized. Entanglement is achieved using a single
laser pulse, and the method can in principle be applied to any number of ions.
We report here the use of this technique to generate entangled states of two,
and for the first time, four particles.

Most experimental demonstrations of entanglement to date have relied on the selection
of data from random processes, such as the preparation and detection of photon pairs in
parametric down-conversion,7–9 or of atoms in a thermal beam.10 All methods of this type
suffer from inescapable signal degradation when entanglement of larger numbers of particles is
attempted, since the probability of randomly generating the appropriate conditions decreases
exponentially. For instance, in the experiment of Ref. 7, two-photon entangled states could
be generated and detected at a rate of roughly 1000/s, three-photon states at a rate of
30 per hour, and four-photon states at an extrapolated rate of several per year. Trapped
ions have been suggested as a system in which such effects might be avoided,11 and in a
previous experiment, we demonstrated two-particle entanglement in a deterministic way.12

By “deterministic” we mean that the desired state could be produced with a high degree of
certainty at a user-specified time,13 which is necessary for avoiding the degradation described
above. However, that experiment relied on the particular behavior of two ions in a quadrupole
RF trap, and could not easily be applied to larger numbers of particles.

The entanglement technique proposed by Mølmer and Sørensen6,14 can be understood by
considering a pair of spin-1/2 charged particles confined together in a harmonic potential.
The energy levels of this system are illustrated in Fig. 1, where h̄ω0 is the internal energy
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splitting of each particle, and ν is the oscillation frequency of a particular collective mode of
the particles in the trap. Using laser-cooling and optical-pumping techniques,15 the particles
are initially prepared in their spin-down internal state and in the ground state of their
collective motion: |ψ〉 = |↓↓ 0〉. By applying optical fields oscillating at ω0 + ν − δ and
ω0−ν+ δ, the two-step transition from |↓↓ 0〉 to |↑↑ 0〉 is driven. For sufficiently large δ, the
intermediate states |↑↓1〉 and |↓↑1〉 are negligibly occupied, so that no motional excitation
actually occurs. The resulting interaction Hamiltonian, in the rotating-wave approximation
and the Lamb-Dicke limit, is then

H =
h̄Ω̃

2

(
|↑↑〉〈↓↓|+ |↓↓〉〈↑↑|+ |↑↓〉〈↓↑|+ |↓↑〉〈↑↓|

)
, (1)

with Ω̃ = η2Ω2/δ when the single particle |↓〉 ↔ |↑〉 transition has Rabi frequency Ω and
the Lamb-Dicke parameter is η. For an excitation involving momentum transfer h̄k and a
total particle mass of M , η is given by (h̄k2/2Mν)1/2. Entanglement is achieved by applying
H for a time t = π/2Ω̃, making the spin wavefunction |ψ2〉 = (|↑↑〉 − i|↓↓〉)/

√
2. This spin

state is in fact created for any initial motional state |n〉, so long as the Lamb-Dicke criterion
η2n� 1 is satisfied.

In order for the intermediate states | ↑↓ 1〉 and | ↓↑ 1〉 to be negligibly occupied, the
detuning δ must be large compared to the transition linewidth ηΩ. However, it is clear from
the expression for Ω̃ that the entanglement speed is maximized for small δ, and in fact the
technique can still be applied for δ ≈ ηΩ.14,16 Although motional excitation does then occur
to some degree, for select values of δ the excitation vanishes at precisely the time that the
entangled spin state is created. The condition for this to occur is

δ/ηΩ = 2
√
m (2)

for any integer m, and the maximum excitation during the pulse then has mean quantum
number n̄ = 1/2m. Our experiment is operated with m = 1.

As Mølmer and Sørensen discuss, their entanglement method is scalable in the sense that
precisely the same operation can be used to generate the N-particle entangled state

|ψN〉 = (|↑↑ . . . ↑〉+ iN+1|↓↓ . . . ↓〉)/
√

2 (3)

if N is any even number, while for N odd, |ψN〉 can be generated using one entanglement
pulse accompanied by a separate independent rotation of each particle’s spin.

If the ions are uniformly illuminated, the Mølmer and Sørensen scheme requires that
they all participate equally in the intermediate motional excitation, which implies that the
only suitable mode for arbitrary N is the center-of-mass mode. However, this mode has a
practical disadvantage because in our experiments fluctuating ambient electric fields cause
it to heat at a significant rate. Although for large δ the entanglement operation is largely
independent of the motion, so that heating is unimportant, in the small-δ case it is necessary
that motional decoherence be avoided. Modes involving only relative ion motion couple to
higher moments of the field, so heating of them is negligible,15 and for N = 2 and N = 4,
such modes do exist in which each particle participates with equal amplitude.17 In both cases,
they are symmetric “stretch” modes, in which alternating ions oscillate out of phase. We use
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these modes here. Excitation of the center-of-mass mode does still affect the experiment, as
the motion in spectator modes modifies the coupling strength to the mode of interest.14,15

For this reason, we initially cool both the center-of-mass and stretch modes to near their
ground state.

The experiment was performed using 9Be+ ions confined in a miniature linear RF trap,18

with the N ions lying in a line along the trap’s weak axis. Two spectrally resolved ground-
state hyperfine levels compose the effective spin-1/2 system, with |↓〉 ≡ |F = 2,mF = −2〉,
|↑〉 ≡ |F = 1,mF = −1〉, where F is the total angular momentum quantum number, and
h̄mF is the projection of the angular momentum along the quantization axis defined by an
externally applied magnetic field. The hyperfine splitting ω0/2π is approximately 1.25 GHz.
Coherent coupling between |↓〉 and |↑〉 is provided via stimulated Raman transitions. The
two Raman laser beams have a wavelength of 313 nm with a difference frequency near ω0,
and are perpendicular, with their difference wave-vector lying along the line of ions. They are
detuned ∼80 GHz blue of the 2P1/2 excited state, with intensities giving Ω/2π ≈ 500 kHz.
For both the two- and four-ion experiments, the desired stretch-mode frequency ν/2π was
8.8 MHz, giving η = 0.23/N1/2. The two driving frequencies required for the entanglement
operation are generated by frequency modulating one of the Raman beams using an electro-
optic modulator.

After the entanglement operation, the ions are probed by illuminating them with a
circularly-polarized laser beam tuned to the 2S1/2(F = 2,mF = −2) ↔ 2P3/2(F = 3,mF =
−3) cycling transition. Each ion in |↓〉 fluoresces brightly, leading to the detection of ∼15
photons/ion on a photomultiplier tube during a 200 µs detection period. In contrast, an ion
in |↑〉 remains nearly dark. Because the number of photons detected from a spin-down ion
fluctuates according to Poisson statistics, in a single experiment the the number of spin-down
ions can be determined with only a limited accuracy. For the data reported, each experi-
ment was repeated 1000 times under the same conditions, and the resulting photon-number
distribution fit to a sum of Poissonians to determine the Pj. The results are given in Table
I, and show that in both cases, the probabilities for all N ions to be in the same state are
large compared to the probabilities for the other cases. This is characteristic of the states
|ψN〉, although the fact that the middle probabilities are nonzero indicates that we do not
generate the entangled states with perfect accuracy.

In order to prove that we are generating a reasonable approximation to |ψN 〉, it is nec-
essary to prove that the populations of |↑ . . . ↑〉 and |↓ . . . ↓〉 are coherent. In terms of
the density matrix for the system, ρ, we must measure the far off-diagonal element ρ↑...↑,↓...↓,
whose amplitude will be abbreviated ρ(↑↓). This can be achieved by applying a simple anal-
ysis pulse to the ions before observing them. If the Raman difference frequency is set to ω0

(and the frequency modulator turned off), each ion i undergoes ordinary Rabi oscillations,
evolving according to the Hamiltonian

Hi =
h̄Ω

2

(
eiφ|↑〉i〈↓|i + e−iφ|↓〉i〈↑|i

)
, (4)

where φ is the phase of the difference frequency relative to that of the entanglement pulse.
This Hamiltonian is applied for time π/2Ω (a π/2 pulse), and the parity

Π ≡
N∑
j=0

(−1)jPj (5)
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is observed while φ is varied. As seen in Fig. 2, for N ions Π oscillates as cosNφ, and the
amplitude of this oscillation is in fact 2ρ(↑↓).

2 The resulting values are given in Table I. From
the data shown in the table, our state preparation fidelity

F ≡ 〈ψN |ρ|ψN〉 =
1

2

(
P(↑) + P(↓)

)
+ ρ(↑↓) (6)

can be determined, where P(↑) is the population of |↑ . . . ↑〉 and P(↓) is the population of
|↓ . . . ↓〉. For N = 2 we achieve F = 0.83± 0.01, while for N = 4, F = 0.57± 0.02.

The fact that ρ(↑↓) is nonzero is still insufficient to guarantee entanglement. To be explicit,
a system with density matrix ρ exhibits N-particle entanglement only if no decomposition
ρ =

∑
k pk|ψk〉〈ψk| exists with all the {|ψk〉} factorizable into products of wavefunctions

which depend on fewer than N particles. For example, if |ψ〉i = (| ↑〉i + | ↓〉i)/
√

2 is a
state of ion i, then the four-particle state |ψ〉1|ψ〉2|ψ〉3|ψ〉4 is not entangled, but still has
ρ(↑↓) = 1/16. We note that these are the types of states studied in liquid-state nuclear

magnetic resonance experiments.19 Alternatively, for |ψ〉12 = (|↑〉1|↑〉2 + |↓〉1|↓〉2)/
√

2 and
|ψ〉34 = (|↑〉3|↑〉4 + |↓〉3|↓〉4)/

√
2, the state |ψ〉12|ψ〉34 exhibits two-particle, but not four-

particle entanglement, and has ρ(↑↓) = 1/4.
To establish that we are actually observing N-particle entanglement, consider an arbi-

trary factorizable wave function

|ψF 〉 = [a| ↑ . . .↑〉X + b| ↓ . . .↓〉X + . . .] [c| ↑ . . .↑〉Y + d| ↓ . . .↓〉Y + . . .] , (7)

where X and Y refer to two distinct subsets of the N particles, with |↑ . . . ↑〉X indicating the
state with all particles in subset X spin up, and similarly for the other terms. Normalization
of the factor wavefunctions requires |a|2 + |b|2 ≤ 1 and |c|2 + |d|2 ≤ 1, which can be combined
and rewritten as

(|a| − |c|)2 + 2|ac|+ (|b| − |d|)2 + 2|bd| ≤ 2. (8)

Since the squared terms on the left are positive, (8) implies that |ac|+ |bd| ≤ 1, and in turn
that (|ac|+ |bd|)2 ≤ 1. Expanding the square yields the desired relation,20

P(↑) + P(↓) + 2ρ(↑↓) = 2F ≤ 1, (9)

where P(↑) = |ac|2, P(↓) = |bd|2, and ρ(↑↓) = |abcd| are the previously defined quantities. Since
(9) holds for any separable wavefunction, it must also hold for any separable density matrix,
and is therefore true of any unentangled system. Both our N = 2 and N = 4 experiments
give F > 1/2, so the states they produce exhibit N-particle entanglement.

Quantifying the amount of entanglement present is a more difficult question. A variety
of measures of entanglement have been proposed, but most are difficult to calculate even
numerically.21,22 For N = 2, Wootters has given an explicit formula for the “entanglement
of formation,” E, as a function of ρ.23 Although we have not reconstructed the entire two-
particle density matrix, the populations measured place sufficient bounds on the unmeasured
elements to determine that E ≈ 0.5. This indicates that roughly two pairs of our ions would
be required to carry the same quantum information as a single perfectly entangled pair.

In the four-ion case, no explicit formula for entanglement is known. The data do indicate
that our density matrix can be expressed approximately as

ρ = 0.43|ψ4〉〈ψ4|+ 0.57ρincoh, (10)
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where |ψ4〉 is the desired state and ρincoh is completely incoherent (ie., diagonal). These
coefficients are determined directly from the value of ρ(↑↓) in Table I, together with the
fact that no evidence for other off-diagonal matrix elements was observed. To determine a
measure of entanglement, however, it is necessary to decompose ρ as a sum of |ψ4〉 and a
“worst-case” factorizable matrix ρF , which can be accomplished as

ρ = 0.13|ψ4〉〈ψ4|+ 0.87ρF . (11)

Note that Eqs. (10) and (11) both describe the same physical state, but that in (11), ρF
consists of a specific mixture of two- and three-particle entangled states that is highly unlikely
to occur in our experiments. In either description, it is clear that our state-preparation
accuracy is limited.

The source of decoherence in our experiments is not entirely clear, but evidence suggests
that it is related to intensity fluctuations in the Raman laser beams, a problem we are working
to understand and correct.24 The presence of decoherence, and the fact that it affects the four-
ion experiment more strongly than the two-ion one, illustrates the need to carefully define
the sense in which our entanglement operation is “scalable.” Any entanglement experiment
is exponentially sensitive to decoherence as the number of particles involved is increased,
unless sufficient accuracy can be achieved for error-correction schemes to be gainfully applied.
Such schemes are thought to require an error rate on the order of 10−4 per operation,25 and
we are certainly far from this regime. However, even if such a level of fidelity were to be
achieved, applications such as quantum computing still require very large entangled states to
be generated in a reasonable amount of time and using a reasonable amount of resources. The
method demonstrated here is important in this regard, since it uses only a single operation
and requires a time that scales roughly as N1/2.

In conclusion, we have demonstrated for the first time a four-particle entangled state, and
have done so with an intrinsically scalable method. In the language of quantum information
science, we have realized a four-quantum-bit logic gate. This system is relevant for the fu-
ture development of quantum information technology, as such states may used to implement
quantum error-detection schemes26 or to demonstrate rudimentary algorithms.27,28 Entan-
glement of four particles is also interesting in its own right, as such states can show strong
violations of local realism.5 Even the two-particle Bell’s inequality measurement would be
interesting to implement, as the near-perfect detection efficiency for ions would eliminate
the “fair sampling” hypothesis which has been required in other experiments.29 In addition
to improved fidelity, applications such as these do require the ability to perform individual
manipulation and detection of each ion, but this is not expected to be a severe experimental
challenge.30
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N P0 P1 P2 P3 P4 ρ(↑↓)
2 0.43 0.11 0.46 - - 0.385
4 0.35 0.10 0.10 0.10 0.35 0.215

Table 1: Characterization of two-ion and four-ion states. Pj denotes the probability that j

ions were measured to be in |↓〉, and ρ(↑↓) denotes the amplitude of the density matrix element

ρ↑...↑,↓...↓. Uncertainties in ρ(↑↓) and the N = 2 populations are ±0.01, and uncertainties in

the N = 4 populations are ±0.02.
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Figure 1: Entanglement scheme for two particles. Each ion is initially prepared in the

|↓〉 internal state, and the collective motion of the pair is cooled to its ground state |0〉.
Laser fields oscillating near ω0 + ν and ω0 − ν couple the |↓↓〉 and |↑↑〉 states as shown. By

detuning the single transition frequencies by a small amount δ, the populations of the |↓↑ 1〉
and |↑↓ 1〉 states are kept small. Then by driving the double transition for the appropriate

time, the entangled state (|↑↑〉 − i|↓↓〉)/
√

2 is created. For four ions, the same procedure

generates the state (|↑↑↑↑〉 + i|↓↓↓↓〉)/
√

2. Note that in the actual experiment, each of the

single transitions shown is itself a two-photon Raman transition, driven by a pair of laser

beams; the entire process therefore consists of a four-photon transition.

Figure 2: Determination of ρ(↑↓) for (a) two ions and (b) four ions. After the entanglement

operation of Fig. 1, an analysis pulse with relative phase φ is applied on the single-ion

|↓〉 ↔ |↑〉 transition. As φ is varied, the parity of the N ions oscillates as cosNφ, and the

amplitude of the oscillation is twice the magnitude of the density-matrix element ρ(↑↓). Each

data point represents an average of 1000 experiments, corresponding to a total integration

time of roughly 10 s for each graph.
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